(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
+(X, 0) → X
+(X, s(Y)) → s(+(X, Y))
double(X) → +(X, X)
f(0, s(0), X) → f(X, double(X), X)
g(X, Y) → X
g(X, Y) → Y
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
double(z0) → +(z0, z0)
f(0, s(0), z0) → f(z0, double(z0), z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), z0) → c3(F(z0, double(z0), z0), DOUBLE(z0))
S tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), z0) → c3(F(z0, double(z0), z0), DOUBLE(z0))
K tuples:none
Defined Rule Symbols:
+, double, f, g
Defined Pair Symbols:
+', DOUBLE, F
Compound Symbols:
c1, c2, c3
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
0,
s(
0),
z0) →
c3(
F(
z0,
double(
z0),
z0),
DOUBLE(
z0)) by
F(0, s(0), z0) → c3(F(z0, +(z0, z0), z0), DOUBLE(z0))
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
double(z0) → +(z0, z0)
f(0, s(0), z0) → f(z0, double(z0), z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), z0) → c3(F(z0, +(z0, z0), z0), DOUBLE(z0))
S tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), z0) → c3(F(z0, +(z0, z0), z0), DOUBLE(z0))
K tuples:none
Defined Rule Symbols:
+, double, f, g
Defined Pair Symbols:
+', DOUBLE, F
Compound Symbols:
c1, c2, c3
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
0,
s(
0),
z0) →
c3(
F(
z0,
+(
z0,
z0),
z0),
DOUBLE(
z0)) by
F(0, s(0), 0) → c3(F(0, 0, 0), DOUBLE(0))
F(0, s(0), s(z1)) → c3(F(s(z1), s(+(s(z1), z1)), s(z1)), DOUBLE(s(z1)))
F(0, s(0), x0) → c3(DOUBLE(x0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
double(z0) → +(z0, z0)
f(0, s(0), z0) → f(z0, double(z0), z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), 0) → c3(F(0, 0, 0), DOUBLE(0))
F(0, s(0), s(z1)) → c3(F(s(z1), s(+(s(z1), z1)), s(z1)), DOUBLE(s(z1)))
F(0, s(0), x0) → c3(DOUBLE(x0))
S tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), 0) → c3(F(0, 0, 0), DOUBLE(0))
F(0, s(0), s(z1)) → c3(F(s(z1), s(+(s(z1), z1)), s(z1)), DOUBLE(s(z1)))
F(0, s(0), x0) → c3(DOUBLE(x0))
K tuples:none
Defined Rule Symbols:
+, double, f, g
Defined Pair Symbols:
+', DOUBLE, F
Compound Symbols:
c1, c2, c3, c3
(7) CdtGraphRemoveDanglingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 of 5 dangling nodes:
F(0, s(0), 0) → c3(F(0, 0, 0), DOUBLE(0))
F(0, s(0), x0) → c3(DOUBLE(x0))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
double(z0) → +(z0, z0)
f(0, s(0), z0) → f(z0, double(z0), z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), s(z1)) → c3(F(s(z1), s(+(s(z1), z1)), s(z1)), DOUBLE(s(z1)))
S tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), s(z1)) → c3(F(s(z1), s(+(s(z1), z1)), s(z1)), DOUBLE(s(z1)))
K tuples:none
Defined Rule Symbols:
+, double, f, g
Defined Pair Symbols:
+', DOUBLE, F
Compound Symbols:
c1, c2, c3
(9) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
double(z0) → +(z0, z0)
f(0, s(0), z0) → f(z0, double(z0), z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), s(z1)) → c(F(s(z1), s(+(s(z1), z1)), s(z1)))
F(0, s(0), s(z1)) → c(DOUBLE(s(z1)))
S tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), s(z1)) → c(F(s(z1), s(+(s(z1), z1)), s(z1)))
F(0, s(0), s(z1)) → c(DOUBLE(s(z1)))
K tuples:none
Defined Rule Symbols:
+, double, f, g
Defined Pair Symbols:
+', DOUBLE, F
Compound Symbols:
c1, c2, c
(11) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
double(z0) → +(z0, z0)
f(0, s(0), z0) → f(z0, double(z0), z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), s(z1)) → c(DOUBLE(s(z1)))
F(0, s(0), s(z1)) → c
S tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), s(z1)) → c(DOUBLE(s(z1)))
F(0, s(0), s(z1)) → c
K tuples:none
Defined Rule Symbols:
+, double, f, g
Defined Pair Symbols:
+', DOUBLE, F
Compound Symbols:
c1, c2, c, c
(13) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
F(0, s(0), s(z1)) → c(DOUBLE(s(z1)))
F(0, s(0), s(z1)) → c
DOUBLE(z0) → c2(+'(z0, z0))
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
double(z0) → +(z0, z0)
f(0, s(0), z0) → f(z0, double(z0), z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), s(z1)) → c(DOUBLE(s(z1)))
F(0, s(0), s(z1)) → c
S tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
K tuples:
F(0, s(0), s(z1)) → c(DOUBLE(s(z1)))
F(0, s(0), s(z1)) → c
DOUBLE(z0) → c2(+'(z0, z0))
Defined Rule Symbols:
+, double, f, g
Defined Pair Symbols:
+', DOUBLE, F
Compound Symbols:
c1, c2, c, c
(15) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
+'(z0, s(z1)) → c1(+'(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), s(z1)) → c(DOUBLE(s(z1)))
F(0, s(0), s(z1)) → c
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(+'(x1, x2)) = [1] + [4]x2
POL(0) = [5]
POL(DOUBLE(x1)) = [2] + [4]x1
POL(F(x1, x2, x3)) = [5] + [5]x1 + [5]x2 + [5]x3
POL(c) = 0
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(s(x1)) = [1] + x1
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
double(z0) → +(z0, z0)
f(0, s(0), z0) → f(z0, double(z0), z0)
g(z0, z1) → z0
g(z0, z1) → z1
Tuples:
+'(z0, s(z1)) → c1(+'(z0, z1))
DOUBLE(z0) → c2(+'(z0, z0))
F(0, s(0), s(z1)) → c(DOUBLE(s(z1)))
F(0, s(0), s(z1)) → c
S tuples:none
K tuples:
F(0, s(0), s(z1)) → c(DOUBLE(s(z1)))
F(0, s(0), s(z1)) → c
DOUBLE(z0) → c2(+'(z0, z0))
+'(z0, s(z1)) → c1(+'(z0, z1))
Defined Rule Symbols:
+, double, f, g
Defined Pair Symbols:
+', DOUBLE, F
Compound Symbols:
c1, c2, c, c
(17) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(18) BOUNDS(O(1), O(1))